Between History and Archaeology: Papers in honour of Jacek Lech is a collection of forty-six papers papers in honour of Professor Jacek Lech, compiled in recognition of his research and academic career as well as his inquiry into the study of prehistoric flint mining, Neolithic flint tools (and beyond), and the history of archaeology.

The papers explore topics on archaeology and history, and are organised into three sections. The first contains texts on flint mining dealing with well-known mining sites as well as previously unpublished new material. The reader will find here a wide spectrum of approaches to flint mining, ways of identifying raw materials used by prehistoric communities, and an impressive overview of the history of research, methodology and approaches to flint mining in Europe, North America and Asia.

The following group of papers deals with the use of flint by Neolithic and younger communities, including typological studies on trace evidence analyses as well as theoretical papers on prehistoric periods in Europe and the New World.

The final section consists of papers on the history of archaeology in the 19th and 20th centuries. Some deal with the beginnings of archaeology as a scholarly discipline, while others present significant research from different countries. Readers will also find papers on the development of archaeology in the second half of the 20th century, both in political and institutional contexts. The book ends with the memories, which bring the Jubilarian closer to the reader by viewing him through the eyes of his co-workers and friends.

Dr Dagmara H. Werra is an archaeologist and an ethnologist. She works at the Institute of Archaeology and Ethnology of the Polish Academy of Sciences as an adjunct at the Autonomous Research Laboratory for Prehistoric Flint Mining. In her professional career Dr Werra deals with prehistoric flint mining, the use of flint in Metal Ages and in modern times (gunflints) and with the identification and use of siliceous rocks by prehistoric communities.

She obtained a BA in ethnology as well as MA and PhD (2013) in archaeology at the Nicolaus Copernicus University in Torun. She is a project manager on the characteristics of ‘chocolate’ flint, and is a participant of research on obsidian artefacts. Since 2017 Dr Werra is Editor-In-Chief of the Archaeologia Polonia journal. She participated and conducted archaeological research at numerous archaeological sites, including those associated with flint mining.

Dr Marzena Woźni is a historian and an archaeologist. Her research deals with the history of Central European archaeology, including studies on the relationships between scholars, the history of the institutions and the archaeological thought. Dr Woźni authored almost forty articles on these issues as well as two books – Between generations. An interview with Professor Jan Machnik concluded by Marzena Woźni and Włodzimierz Demetrykiewicz (1859–1937). A prehistorian from the turn of the eras.

She graduated with a history and then studies in museology degrees at the Jagiellonian University in Krakow. In 2015 she obtained a PhD in archaeology at the Institute of Archaeology and Ethnology of the Polish Academy of Sciences in Warsaw. She was a trainee at the National Museum of Archaeology in Malta. She is currently working on a dissertation devoted to the history of archaeology in Lesser Poland in the 19th century. She is also interested in the history of gunflint mining. Marzena is head of the Archives at the Archaeological Museum in Krakow.
Between History and Archaeology

Papers in honour of Jacek Lech

edited by

Dagmara H. Werra and Marzena Woźny
Contents

Editorial Preface .. iv
Dagmara H. Werra and Marzena Woźny

Early Prehistoric Flint Mining in Europe: a Critical Review of the Radiocarbon Evidence 1
Susana Consuegra and Pedro Díaz-del-Río

Twenty-five Years Excavating Flint Mines in France and Belgium: an Assessment ... 9
Françoise Bostyn, Hélène Collet, Emmanuel Ghesquière, Anne Hauzeur, Pierre-Arnaud de Labriffe, Cyril Marcigny in collaboration with Philippe Lavachery

Flint Mining in Northern France and Belgium: a Review .. 25
Françoise Bostyn, Hélène Collet, Jean-Philippe Collin and François Glligny

Flint Mining and the Beginning of Farming in Southern England ... 37
Robin Holgate

Women’s Work? Findings from the Neolithic Chert Mines in the ‘Krumlovský les’, South Moravia 43
Martin Oliva

New research at Tata-Kálváriadomb, Hungary ... 49
Katalin T. Biró, Erzsébet Harman-Tóth and Krisztina Dúzs

News from the Eastern Fringe – The Baunzen Site near Vienna, Austria ... 59
Michael Brandl, Oliver Schmitsberger and Gerhard Trnka

Siliceous Raw Materials from the Eastern Part of the Polish Carpathians and Their Use in Stone and Bronze Ages .. 69
Andrzej Pelisiak

Ongar: a Source of Chert in Lower Sindh (Pakistan) and Its Bronze Age Exploitation 79
Paolo Biagi and Elisabetta Starnini

The Chocolate Flint Mines in the Udorka Valley (Częstochowa Upland) – a Preliminary Report on the Field and Lidar Surveys ... 89
Magdalena Sudol-Procyk, Janusz Budziszewski, Maciej T. Krajcarz, Michał Jakubczak and Michał Szubski

Exploitation and Processing of Cretaceous Erratic Flint on the Polish Lowland. A Case Study of Sites in the Vicinity of Gorzów Wielkopolski .. 103
Przemysław Bobrowski and Iwona Sobkowiak-Tabaka

The Latest Knowledge on Use of Primary Sources of Radiolarites in the Central Váh Region (the Microregion of Nemšová – Červený Kameň) .. 115
Ivan Cheben, Michal Cheben, Adrián Nemergut and Marián Soják

The Prehistoric Bedrock Quarries Occurring within the Chert Bearing Carbonates of the Cambrian-Ordovician Kittatinny Supergroup, Wallkill River Valley, Northwestern New Jersey-Southeastern New York, U.S.A. ... 133
Philip C. LaPorta, Scott A. Minchak and Margaret C. Brewer-LaPorta

Methodical Concepts and Assumptions Underlying Research Methods for Studies on the Erratic Raw Material of the Polish Lowland. Geology versus Archaeology .. 147
Piotr Chachlikowski
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why Foragers Become Farmers: Development and Dispersal of Food Producing Economies in Comparative Perspective</td>
<td>157</td>
</tr>
<tr>
<td>Andreas Zimmermann</td>
<td></td>
</tr>
<tr>
<td>Acquisition and Circulation of Flint Materials in the Linear Pottery Culture of the Seine Basin</td>
<td>165</td>
</tr>
<tr>
<td>Pierre Allard</td>
<td></td>
</tr>
<tr>
<td>The Organisation of Flint Working in the Dutch Bandkeramik: a Second Approach</td>
<td>173</td>
</tr>
<tr>
<td>Marjorie E.Th. de Grooth</td>
<td></td>
</tr>
<tr>
<td>Jurassic-Cracow Flint in the Linear Pottery Culture in Kuyavia, Chełmno Land and the Lower Vistula Region</td>
<td>181</td>
</tr>
<tr>
<td>Joanna Pyzel and Marcin Wąs</td>
<td></td>
</tr>
<tr>
<td>Morphological and Functional Differentiation of the Early Neolithic Perforators and Borers – a Case Study from Tominy, South-Central Poland</td>
<td>195</td>
</tr>
<tr>
<td>Marcin Szeliga and Katarzyna Pyżewicz</td>
<td></td>
</tr>
<tr>
<td>A Danubian Raw Material Exchange Network: a Case Study from Chełmno Land, Poland</td>
<td>211</td>
</tr>
<tr>
<td>Dagmara H. Werra, Rafal Siuda and Jolanta Malecka-Kukawka</td>
<td></td>
</tr>
<tr>
<td>Lithic Workshops and Depots/Hoards in the Early/Middle Neolithic of the Middle Danube Basin and of the Northern Balkans</td>
<td>225</td>
</tr>
<tr>
<td>Małgorzata Kaczanowska and Janus K. Kozłowski</td>
<td></td>
</tr>
<tr>
<td>Considerations on the Topic of Exceptionally Large Cores of Chocolate Flint</td>
<td>239</td>
</tr>
<tr>
<td>Anna Zakosćielna</td>
<td></td>
</tr>
<tr>
<td>Romancing the Stones: a Study of Chipped Stone Tools from the Tisza Culture Site of Hodmezovasaryl-Gorza, Hungary</td>
<td>247</td>
</tr>
<tr>
<td>Barbara Voytek</td>
<td></td>
</tr>
<tr>
<td>Flint Knapping as a Family Tradition at Bronocice, Poland</td>
<td>253</td>
</tr>
<tr>
<td>Marie-Lorraine Pipes, Janusz Kruk and Sarunas Milisauskas</td>
<td></td>
</tr>
<tr>
<td>The Cucuteni – Trypillia ‘Big Other’ – Reflections on the Making of Millennial Cultural Traditions</td>
<td>267</td>
</tr>
<tr>
<td>John Chapman and Bisserka Gaydarska</td>
<td></td>
</tr>
<tr>
<td>A Neolithic Child Burial from Ciemna Cave in Ojców National Park, Poland</td>
<td>279</td>
</tr>
<tr>
<td>Paweł Valde-Nowak, Damian Stefański and Anita Szczepanek</td>
<td></td>
</tr>
<tr>
<td>The Settlement of Bodaki – a Tripollian-Culture Centre of Flint Exploitation in Volhynia</td>
<td>289</td>
</tr>
<tr>
<td>Natalia N. Skakun, Vera V. Terekhina and Boryana Mateva</td>
<td></td>
</tr>
<tr>
<td>Late Bronze Age Flint Assemblage from Open-pit Mine Reichwalde in Saxony, Germany</td>
<td>303</td>
</tr>
<tr>
<td>Mirosław Masojć</td>
<td></td>
</tr>
<tr>
<td>Workshops in the Immediate Vicinity of a Mining Field of Flint Sickle-Shaped Knives from the Foreland of the Outcrops of Swieciechów Flint</td>
<td>313</td>
</tr>
<tr>
<td>Jerzy Libera</td>
<td></td>
</tr>
<tr>
<td>Mining for Salt in European Prehistory</td>
<td>323</td>
</tr>
<tr>
<td>Anthony Harding</td>
<td></td>
</tr>
<tr>
<td>Late Pre-Hispanic Stone-tool Workshops at Cayash Ragaj, Central Andes, Peru</td>
<td>331</td>
</tr>
<tr>
<td>Andrzej Krzanowski and Krzysztof Tunia</td>
<td></td>
</tr>
<tr>
<td>From the History of Polish Archaeology. In the Search for the Beginnings of Polish Nation and Country</td>
<td>355</td>
</tr>
<tr>
<td>Adrianna Szczepanek</td>
<td></td>
</tr>
</tbody>
</table>
Towards a Common Language: the Plan to Standardise Symbols on Archaeological Maps in 19th-century Europe ... 363
Marzena Woźny

Izydor Kopernicki (1825–1891) and Czech Archaeology ... 373
Karel Sklenář

From Poetry to Prehistory: Mary Boyle and the Abbé Breuil ... 381
Alan Saville

The Life and Work of Bohdan Janusz (1887–1930) in the Context of the Intellectual Environment of the Galicia Region ... 403
Natalia Bulyk

Albin Jura (1873–1958): Social Activist, Teacher and Stone Age Researcher ... 419
Elżbieta Trela-Kieferling

Striped Flint and the Krzemionki Opatowskie Mine, Poland. The Beginnings ... 427
Danuta Piotrowska

Archaeological Research at the Lvov University: Interwar Period .. 435
Natalia Bilas

Archaeology and Art: the Relationship of Karel Absolon (1877–1960) and Czechoslovak Artists in the Period Between the World Wars ... 455
Petr Kostrhun

The Basket Workshop Warehouse Manager: Memory by Alfred Wielopolski on Józef Kostrzewski’s Fate During the German Nazi Occupation Time (1941–1943) ... 471
Andrzej Prinke

Konrad Jaźdżewski (1908–1985) – Pupil and Friend of Professor Dr Józef Kostrzewski 477
Maria Magdalena Blombergowa

Polish Archaeology Under Communism. The Trial of Massive Corruption of Clever Minds 487
Andrzej Boguszewski

Forgotten History of Zespół do Badań Dziejów Szkła w Wielkopolsce (the Group for the Study of History of Glass in Greater Poland) ... 491
Jarmila E. Kaczmarek

Professor Jacek Lech’s Archaeological Interest in Ojców and the Sąspowska Valley 503
Józef Partyka

Do you remember? ... 509
Franciszek M. Stępniowski
Ongar: a Source of Chert in Lower Sindh (Pakistan) and Its Bronze Age Exploitation

Paolo Biagi
Department of Asian and North African Studies, Ca’ Foscari University, Venice, Ca’ Cappello, San Polo 3035, I - 30125 Venezia, Italy
e-mail: pavelius@unive.it

Elisabetta Starnini
School of Humanistic Sciences, Department of Historical Studies, University of Torino, via S. Ottavio 20, I - 10124 Torino, Italy
e-mail: elisabetta.starnini@unito.it

Abstract: This paper summarizes the results of twenty-six years of fieldwork carried out by the Italian Archaeological Expedition in Sindh in search for chert sources, and documenting their exploitation in prehistory at least since the Acheulian Palaeolithic to the Bronze Age, Indus Civilization mining areas and workshops. The explorations focused on three main chert sources: the Rohri Hills, Ongar, Daphro and Bekhain Hills, and Jhimpir. They are not the only ones known to date in Sindh that were intensively exploited especially during the development of the Indus Civilization. The economic importance of chert exploitation in the Indus Civilization has often been underestimated by most archaeologists. This fact is evident when reading the published narratives about its handicraft, trade and production, although there is little doubt that this raw material played a fundamental role in the economy of the Indus cities, also as main alternative to metal for making well-defined tools for specific handicrafts. The importance of chert exploitation is testified indeed by the impressive archaeological evidence left behind. It consists of chert mines, chopping floors and blade/bladelet workshops, whose preservation is unfortunately challenged by present-day industrial works still underway. Regrettably, the evidence is under a serious risk of disappearing before it can be fully documented and understood by archaeologists.

Keywords: Pakistan, Sindh, Indus Civilization, raw material sources, chert mines and workshops

Introduction

Until the end of the 1980s very little was known of the Bronze Age, Indus Civilization chipped stone assemblages of Sindh (Pakistan). The situation had not improved very much at the beginning of the 2000s partly because of the emphasis given to other categories of objects made from bronze, semi-precious stone, shell etc. (Bhan et al. 2002).

The scarcity of data regarding siliceous rock exploitation available at that time for the entire Indus Valley and its neighbouring regions is impressive. Most archaeologists working on the Indus Civilization in the Indian Subcontinent never paid much attention to the lithic factor even recently (see for instance Lahiri 1992; Ashtana 1993; Possehl 2002; Ratnagar 2001, 2004a, 2004b; Wright 2010), though Sindh is rich in chert outcrops (Starnini and Biagi 2011), and it is one of the regions with the highest density of Chalcolithic and Bronze Age settlements of the entire Indus Valley (Giosan et al. 2012: Fig. 3a; Khan and Lemmen 2014: Fig. 2).

Characteristic chert artefacts of the Indus Civilization are, besides chipped stone blades, bladelets and microbladelets transformed into drill-micropoints and employed in different handicrafts (Vidale 1987, 2000; Méry 1994; Wheeler 1997: 77–78, 98; Méry et al. 2007; Vidale et al. 2013), and cubic, polished weights (Wheeler 1997: 83; Wright 2010: 189–192, Fig. 7.3).

In 1979 Bridget Alchin wrote the first important report on the Holocene blade assemblages of Sindh (Alchin 1979). She informed us of the discovery of Indus chert ‘working floors’ on the limestone terraces just south of Rohri, at the northern edge of the Rohri Hills, not far from the course of the Indus River (Allchin 1976, 1985; Allchin et al. 1978; Allchin 1999: 291).

More recently Randall William Law (2011) focused his work on the characterisation of the raw materials and provenance of all the stone/mineral artefacts of the Indus Civilization. Also chert samples from four well-defined regions of the Rohri Hills were sampled. This author pointed out the different appearance, colour and texture of the sources that were most probably exploited in different periods of development of the Indus Civilization (Law et al. 2002–2003).

The scope of this paper is to briefly present and discuss the Indus Civilization chert mines recently discovered...
at Ongar and the other terraces that elongate west of it, within the general pattern of data collected by the Italian Archaeological Expedition during almost three decades of fieldwork devoted to the discovery and interpretation of the chert/flint sources and workshops in Sindh (Fig. 1).

Prehistoric chert mines in Sindh

Sindh is very rich in chert sources. Many of them outcrop from the limestone mesas that border the right, western side of the Indus Valley, at least from Ranikot, in the north (Blanford 1867), to Allahdino near Karachi, in the south (Fairservis 1993: 111). Although many sources have never been mentioned by archaeologists, they are all described in the most important volume ever written on the geology of the country more than a century ago by William Thomas Blanford (1880).

In his work Blanford accurately reported not only the outcrops, but also the presence of chert/flint artefacts, both cores and flakes, covering a large area of the northern Rohri Hills terraces south of Rohri (Blanford 1880: 103). A similar situation he described at Ongar. From this later area he reported the presence of flint in the Kirthar limestone beds that characterise the easternmost hill (Blanford 1880: 149). Near Jhimpir he described flinty and cherty Kirthar limestone rocks near the railway station of the small town (Blanford 1880: 152).

All the above three regions were systematically surveyed by the Italian Archaeological Mission in Sindh between 1985 and 2011 (Starnini and Biagi 2011).

Ongar, Daphro and Bekhain

Ongar is a flat-topped Kirthar limestone formation terrace located ca. 25km south of Hyderabad, and 8km north of Jerruck, west of the national road to Karachi in front of the homonymous village just east of the road. The site was discovered in 1959 (Fairservis 1975: 77) though it had already been described in detail by Blanford (1880).

Professor A. Rauf Khan of Karachi University visited the area in the summer of 1972–73, when the industrial exploitation of the limestone deposits of the hill, containing large chert nodules of light brownish grey colour (Munsell 10YR6/2) was already underway. From Ongar and its surroundings he collected an impressive number of chipped stone tools that he attributed to four main assemblages spanning from the Early to the Upper Palaeolithic (Khan 1979).

The easternmost horseshoe-shaped terrace of the Ongar hill was revisited by B. Allchin in 1975–76 (Allchin 1976). This author called the site Milestone 101 following the indications of an officer of the Pakistan Archaeological Department (Allchin et al. 1978: 295). On the top of the mesa she collected chert tools that she attributed to the Lower, Middle and Upper Palaeolithic periods.

Further investigations were undertaken by one of the authors (Paolo Biagi) between 2004 and 2008 (Biagi 2005; Biagi and Franco 2008). In contrast with the reports written by the aforementioned authors, the new surveys demonstrated that the limestone formations rich in chert seams of Ongar, and those of the neighbouring Daphro and Bekhain Hills, were exploited not only during the Palaeolithic period, but also during the Indus Civilization (Fig. 2: 1).

Unfortunately, already in 2004 most of the Ongar archaeological sites had been destroyed by limestone quarrying still underway. Just a few intact areas were discovered during the surveys carried out in the following years. In particular the narrow terrace that elongates between Ongar, in the north-east, and Daphro, in the west (25°09′36″N – 68°12′56″E/25°09′38″N – 68°12′01″E), was found still in a very good state of preservation (Fig. 2: 2 and 3). Indus mining trenches,
Fig. 2. Ongar, Daphro and Bekhain Hills: Location of the Indus chert mines and workshops (1: black dots), along the edges of the hill between Ongar, in the east, and Daphro, in the west (2 and 3: white marks). Maps C. Franco.
Fig. 3. Ongar, Daphro and Bekhain Hills: Indus Civilization chert artefacts: Subconical blade core from Ongar (1), subconical blade cores (2–4) and pre-cores (5 and 6) from Daphro, and large pre-core from Bekhain (7).

small debitage flake clusters, and diagnostic chert artefacts, among which is a subconical blade core (Fig. 3: 1), were recorded mainly along the southern edge of the central part of the aforementioned mesa along a strip some 460m long and 20m wide (25°09’39”N – 68°12’14”E/25°09’37”N – 68°12’30”E: 63–80m asl; Fig. 2: 1–3).

More evidence of Indus chert mining and knapping activities areas was found still intact also in a restricted zone located at the north-westernmost edge of Daphro, facing the alluvial plain toward Meting (Fig. 4: 1 and 2). The first group of structures recorded from this region consists of five aligned, parallel mining trenches and chert knapping workshops located between 25°09’45”N – 68°09’54”E and 25°09’47”N – 68°09’56”E (Fig. 4: 1). A second group of six parallel, C-shaped mining trenches and debitage workshops from which a pre-core and a subconical blade cores and potsherds were also recovered, lies at ca. 25°09’47”N – 68°10’05”E (Fig. 3: 2–6; Fig. 4: 2–6).

The survey was later extended to the Bekhain Hills, a group of low and small terraces raising from the alluvial plain located at 60m asl some 2.5km south of Daphro (Fig. 2:1). Although most of the hills had already been heavily damaged by modern, illegal limestone quarrying, a few areas were recovered in 2008. Some of the Indus mining trenches and chert knapping workshops discovered at Bekhain are shown in Fig. 5, nn. 1–4. Of major importance is the discovery of a large chert pre-core along the eastern edge of the westernmost hill at 25°08’09”N – 68°09’27”E, together with two large decortication flakes (Fig. 3: 7; Fig. 5: 5 and 6). This type of pre-core is quite uncommon. Similar specimens are known only from Mohenjo-Daro (Marshall 1931: Plate CXXXI: 17–19), the Rohri Hills around Zārār Pir Shābān, and Nuhato in Badin taluka (unpublished Jamshoro Museum; Baloch 1973). They probably represent rough-out or chert ‘blocks’ ready to be transported elsewhere.

Moving west, no traces of prehistoric settlements were recorded all across the alluvial plain that separates Daphro from Meting railway station, some 5km to the west. The terraces west of Meting were also surveyed. They consist of fossiliferous limestones containing very small chert nodules unsuitable for knapping due to their dimensions. Evidence of systematic limestone quarrying, most probably related to the construction of the railway in British times, were observed at the top of the flat mesas ca. 100m high, that extend just west of Meting.

At present the illegal exploitation of the Ongar Hill has shifted from limestone to chert mining, a resource that abounds on the hills (Biagi and Nisbet 2011). This latter is utilized for house building and decoration, irrespective of the government strict protection rules aimed at the preservation of the archaeological and national heritage of the country that are systematically unattended (Biagi 2006).

Discussion

As already pointed out mines, quarries and chert knapping workshops are the most important components of a lithic production system (Ericson 1984; Purdy 1984). The Sindhi Bronze Age extractive and knapping complexes provide us with an exceptional chance to shed light on this unique aspect of the Indus Civilization.

Until a few decades ago, systematic surveys had never been undertaken in Sindh after the killing of the first explorer, Nani Gopal Majumdar (1934), with the exception of those conducted by Louis Flam mainly in Sindh Kohistan and part of the Kirthar range (Flam 1987, 2006).

The discoveries made at Ongar, Daphro, Bekhain and also Jhimpir demonstrate that, apart from the Rohri Hills, other rich chert outcrops and mining centres did exist in the Indus Valley. Furthermore the probable presence of other still unidentified mining sites on top of the limestone terraces along the right, western bank of the Indus River, make the problem much more complex than formerly suggested. They greatly complicate our comprehension of the exploitation and circulation of the chert resources within the territory covered by the Indus Civilisation throughout its different stages of development that lasted some 1000 years (Possehl 1988).

As already suggested (Biagi and Starnini 2008), these aspects are to be investigated at least at two levels. In particular: a) at a micro-regional scale, i.e. by identifying the eventual presence of settlements at the foothills involved in the exploitation of the chert outcrops, if any, b) macro-regional scale, studying the distribution pattern of the workshop products at longer distances, either as semi-finished raw material items, or blades ready for use. As regards point a), Indus settlements do exist close to the Rohri Hills (Shaikh et al. 2004–2005; Mallah 2010) although none of them seems to have been involved in trade and exchange of lithic material; while point b) is still too badly known to rely on the oversimplified maps so far published by other authors (Kenoyer 1998: Fig. 5.20a; see also Gupta 1996: Fig. 15).

The present evidence shows that the siliceous raw material of the Rohri Hills was transported in various forms, either as finished standardized blades and bladelets, or as unworked nodules, rough-outs, pre-
cores and finished cores, from which we can infer a multiform demand, and the complexity of the procurement systems of which at present we know very little. We can suggest that also the rich, good-quality chert sources available from Ongar played a similar role in the Indus Civilization economic system.

Since chert demand can essentially be viewed as a function of three variables, namely 1) the number and frequency of activities requiring stone tools, 2) the stone tool production techniques and, 3) stone tool efficiency (Luedtke 1984), to fully understand and quantify the scale of demand for lithic material in the
Fig. 5. Bekhain Hill: Mining trenches discovered along the eastern edge of the westernmost hill between 25°08′13″N – 68°09′30″E and 25°08′09″N – 68°09′27″E (1 and 3); mining trench with a chert workshop along the eastern edge of the central hill at 25°08′09″N – 68°09′48″E (2); mining system at the north-easternmost edge of the central hill at 25°08′09″N – 68°09′37″E (4); huge chert pre-core and limestone decortication flakes from the eastern edge of the westernmost hill at 25°08′09″N – 68°09′27″E (5 and 6). Photo: P. Biagi.

Indus Civilization a future research objective will be to better understand the many socio-economic and craft activities in which stone tools were involved and utilised. The few evidences at present available show that chert artefacts were employed in the operative chain of pottery and semi-precious stone beads production (Vidale 1987, 2000; Méry 1994; Méry et al. 2007).

To conclude, several problems and questions regarding chert extraction and distribution during the Indus
Civilization are still open and unanswered due to absence of proper information, among which are:

1. The existence, in Sindh, of other chert outcrops visually very ‘similar’ to those of the Rohri Hills, with clear evidences of exploitation during the Indus period, challenges the current, suggested hypothesis of one single procurement area;
2. The difficulty of characterizing siliceous rocks with scientific methods (Barfield 1999; Bressy et al. 2006), does not enable us to indisputably discriminate the sources in the same ways as for example obsidian;
3. The scarcity of systematic analyses (typological, technological and functional) of the chipped stone assemblages recovered from the urban centres of the Indus Civilization.

The study of chert exploitation shows that this resource played indeed a crucial role in the operative chain of several handicrafts during the Indus Civilization. The strategic and economic importance of this raw material can be inferred in the impressive traces left on the landscape of Sindh in form of extraction and mining districts, knapping floors and workshops, where tons of chert have been extracted and millions of blades have been produced.

It is regrettable that most of the archaeological sites discussed in this paper have already been destroyed by illegal industrial limestone and chert mining still underway, and no attention has ever been paid to their protection by international, national and local authorities despite their importance as a unique prehistoric heritage of the country (Biagi 2006; Dennell 2014: 99).

Acknowledgements

The surveys at Ongar were carried out in collaboration with the Institute of Sindhology, Sindh University (Jamshoro, Pakistan). The authors are very grateful to the former Vice-chancellor of Sindh University, Mr. Mazharul Haq Siddiqui, and the former Institute’s Director, Mr. Shoukat Shoro, for all their help before and during their permanence at Sindh University Campus. Many thanks are due to Mir Atta Mohammad Talpur, Mir Farooq Ahmed Talpur, Mir Ghulam Rasool Talpur and Mir Abdul Rehman Talpur, who took part in the Ongar and Daphro surveys, for all their help and assistance, to Dr. C. Franco, who took part in the 2008 fieldwork season at Ongar and Daphro, and Dr. R. Nisbet for his assistance during the surveys at Jhimpir and Ranikot.

The research in Sindh was carried out thanks to the financial support of the Italian Ministry of Foreign Affairs (MAE; Rome, I), the Prehistoric Society (London, United Kingdom), the National Geographic Society (Washington, USA), the Ca’ Foscari University Archaeology Funds (Venice, I), EURAL Gnutti Ltd (Rovato, I), and the CeVeSCO (Ca’ Foscari University, Venice, I).

References

Vidale, M. 2000. The Archaeology of Indus Craft, Indus craftspeople and why we study them. Rome, ISIAO.

