Changing the prehistory of Sindh and Las Bela coast: twenty-five years of Italian contribution

Paolo Biagi

Ca’ Foscari University, Venice, Italy E-mail: pavelius@unive.it

Available online: 05 Dec 2011
Changing the prehistory of Sindh and Las Bela coast: twenty-five years of Italian contribution

Paolo Biagi

Abstract

This paper discusses the prehistory of Sindh and Las Bela coast (Balochistan) before and after partition, and the role played by the Italian archaeologists since the 1980s. Until a few years ago the prehistory of Sindh was known mainly from the impressive urban remains of the Indus civilization and the discovery of Palaeolithic assemblages in the desert landscapes close to India, while very little was known of the remains of other periods, their radiocarbon dating and the importance of the coastal zone. Our knowledge of the prehistory of the country has improved greatly during the last twenty-five years, thanks to systematic surveys and excavations in unexplored landscapes, which radically transformed our knowledge of the prehistoric archaeology of this important region of the Indian subcontinent.

Keywords

Sindh; Indus delta; Arabian Sea; raw material sources; shell middens; radiocarbon chronology.

Introduction

On 20 September 1924, Sir John Marshall announced that ‘an entirely new culture going back to Chalcolithic epoch came to light in the Indus valley, in Sindh near Larkana’ (Childe 1926: 34), where the urban remains of Mohenjo-daro gave the visitor ‘an impression of a democratic bourgeois economy’ (Childe 1934: 207).

The excavations carried out by Marshall (1931), Mackay (1937–8), Wheeler (1976; Ray 2008) and others (Lahiri 2005: 205) brought to light the remains of a complex metropolis (Dikshit 1939), with public and private structures, craftsmen quarters, a ‘distinct lack of evidence of warfare’ (Possehl 1997: 434), few metal implements, where ‘flint and stone tools are represented only by a few quite simple blades and a few large chert tools flaked...
like celts’ (Childe 1934: 217), which was immediately supposed to indicate trade with the Arabian peninsula (Childe 1928: 214).

Between 1927 and 1931 Majumdar carried out intensive surveys in Sindh (Majumdar 1981), thanks to which new Bronze and Copper Age sites were discovered. He surveyed also the Indus delta, where he revisited the Tharro Hills (Piggott 1950: 79), discovered by G. E. L. Carter just a few years before (Cousens 1998: 38) and, along the course of the Indus, Amri (Burnes 1834: 58; Casal 1964) and Ghazi Shah (Flam 1996, 2006). Further investigations were carried out by Lambrick in the 1940s (Lambrick 1986).

The 1985–2010 surveys and excavations

The chippable raw material sources

Until the end of the 1980s very little was known of the distribution of the chippable raw material sources in Sindh. The first flint workshops were discovered in the 1880s on the Rohri Hills, near Rohri, in Upper Sindh (Evans 1886), although their cultural attribution was defined only some fifty years later (de Terra and Paterson 1939). Following the surveys of the Cambridge Archaeological Mission, Allchin (1979) wrote a report on the Holocene blade assemblages of Sindh. A decade later a paper by Cleland (1987) pointed out the scarcity of data available for the Holocene chipped-stone industries of the Indus Valley, especially those of Amri, Kot Diji and Indus periods.

The surveys and excavations carried out between 1985 and 2002 in the Rohri Hills led to the discovery of impressive flint-mining complexes of the Mature Indus Civilization (Biagi and Cremaschi 1991; Biagi et al. 1997) (Plate 1). A few test trenches were opened, and some workshops excavated, among which are Sites 58 and 59 (Biagi and Pessina 1994), 480 (Negrino and Starnini 1995), 862 (radiocarbon-dated to 3870 ± 70 BP (GrA-3235)) (Biagi 1995; Negrino et al. 1996; Starnini and Biagi 2006) and ZPS3 (Negrino and Starnini 1996). Nevertheless, most archaeologists underestimated the importance of this raw material (Kenoyer 1991; Lahiri 1992), which always played a very important role in the economy of the Indus people, as the research in the Rohri Hills (Biagi and Starnini 2008) and the craftsmen quarters of Mohenjo-daro had shown (Tosi et al. 1984; Vidale 1992, 2000). In 2000 the Italian Archaeological Mission launched a programme of surveys in Lower Sindh. The limestone terraces of Ongar, Daphro and Bekhain, south of Kotri, revealed Indus flint-mining trenches and workshops identical to those of the Rohri Hills (Biagi 2007a; Biagi and Franco 2008).

The 2010–11 surveys, extended to Jhimpir, led to the discovery of good quality flint sources also in this region. They had been first exploited by Final Palaeolithic hunter-gatherers and later mined most probably during the Chalcolithic (Biagi and Nisbet 2010). The Late (Upper) Palaeolithic and Mesolithic sites discovered by Khan (1979a) around Karachi and Rehri, and the shell middens of Las Bela coast (Biagi 2004, 2008a), yielded chipped-stone assemblages obtained from small alluvial pebbles, and liver-coloured Gadani jasper (Snead 1969), a source exploited until the Bronze Age, as shown by a radiocarbon result (GrN-26369: 4460 ± 30 BP). In his report on Allahdino, Fairservis (1982) mentions another good quality flint source some 5km east of Karachi (Hoffman and Cleland 1977).
According to these data, and contrary to what was supposed until a few years ago, both Sindh and Balochistan (Aubry et al. 1988; Law et al. 2002–3) are rich in chippable stone sources, a few artefacts from which were traded down to the Arabian Sea and Gujarat in Mature Indus times (Baloch 1973; Biagi 2004: 9; Rao 1985: 558).

The Late (Upper) Palaeolithic and Mesolithic sites

Before the 1970s Palaeolithic sites had been discovered only on the Rohri Hills and Ongar (Allchin 1976; Allchin et al. 1978), with the exception of two assemblages with geometric microliths from Lower Sindh (Gordon 1950; Todd and Paterson 1947).

The surveys carried out by Professor Khan in the 1970s yielded an impressive number of sites in the surroundings of Karachi. They can be grouped into three main complexes, the first of which belongs to the Late (Upper) Palaeolithic, the other two to the Mesolithic (Khan 1979b). The three periods are characterized by a) various types of burins, thick curved backed points obtained by bipolar retouch, backed bladelets and microbladelets, rare lunates and truncations, b) many lunates, obtained by abrupt, direct or bipolar retouch and c) varieties of trapezoidal armatures, mainly isosceles, pointed or transversal and, in a few cases, notched flakelets. This subdivision cannot be applied to the industries from the Thar Desert, most of which can be attributed to the Atlantic period because of specific types of isosceles trapezes (Biagi 2003–4, 2008b). In 2010 Final Palaeolithic tools were collected also from Jhimpir and Ranikot (Biagi 2011) (Plate 2).

These discoveries demonstrate that Late (Upper) Palaeolithic and Mesolithic hunter-gatherers inhabited both Upper and Lower Sindh. So far their chronology cannot be ascertained because of the absence of stratigraphic sequences and organic material, although their cultural attribution can be suggested thanks to the presence of specific tool types.
The shell middens of Las Bela coast

The first shell middens were discovered in the Daun Bay, south of Gadani promontory, in January 2000 (Biagi 2004). In 2004 more middens were recorded on the high marine terrace immediately south of the same bay (Snead 1969), and also below the above terrace, in January 2008 (Biagi and Franco 2008). The sites (Plate 3), mainly composed of fragmented *Terebralia palustris* mangrove shells with very few material culture remains, are grouped in well-defined clusters (Plate 4). Their absolute date varies also according to their location. From a chronological point of view, they seem to group in two main

Plate 3 Daun: the shell middens Daun 3 and Daun 119 (photo: P. Biagi).

Plate 4 Daun: distribution map of the shell middens discovered between 2000 and 2008 (original map by C. Franco).
clusters, the first of the seventh, the second of roughly the first half of the fifth millennium BP (Plate 5 and Table 1).

Apart from an isolated case in Iranian Makran (Vita-Finzi and Copeland 1980), the Daun shell middens represent the thickest concentration of such sites so far known along the Balochi coast of the northern Arabian Sea, given that no sites of this type have ever been recovered during the preceding surveys (Besenval and Sanlaville 1990; Dales and Lipo 1992; Desse and Desse-Berset 2005; Snead 1967). Scatters of mangrove shells are reported by Snead (1966: 118) from the eastern shore of Siranda lake, along the shores of which Terebralia palustris, Telescopium telescopium and Arcidae shell middens were recorded in January 2011. A different shell midden, rich in net sinkers, was discovered on a high terrace of the Upper Nari formation at Sonari (Khan 1979c), close to the Hab River mouth. It was radiocarbon dated to 4080 ± 30 BP (GrN-27054).

The Indus Delta

This region is essential to understanding the advance of the northern coastline of the Arabian Sea and the formation of the Indus lower plain (Giosan et al. 2006; Harvey and Schumm 1999; Inam et al. 2007; Wilhelmy 1968).

Plate 5 Daun: plot of the uncalibrated radiocarbon dates of Table 1 (courtesy of T. Fantuzzi).
Table 1 Radiocarbon dates from mangrove and marine shells obtained from the coastal sites of Lower Sindh and Las Bela, mentioned in the text. Calibration applied a ΔR of 229 ± 27 years (Dutta et al. 2001; Reimer and Reimer 2001)

<table>
<thead>
<tr>
<th>Site name</th>
<th>Coordinates</th>
<th>Material</th>
<th>Lab number</th>
<th>δ¹³C</th>
<th>Age BP</th>
<th>Cal. BC 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daun 110</td>
<td>25°00’01”N–66°42’21”E Terebralia p.</td>
<td>GrN–31492</td>
<td>-3.44</td>
<td>6690 ± 40</td>
<td>5178–4876</td>
<td></td>
</tr>
<tr>
<td>Daun 111</td>
<td>24°00’00”N–66°42’26”E Terebralia p.</td>
<td>GrN–31493</td>
<td>-3.57</td>
<td>6590 ± 45</td>
<td>5021–4740</td>
<td></td>
</tr>
<tr>
<td>Daun 1</td>
<td>25°00’14”N–66°42’40”E Terebralia p.</td>
<td>GrN–26368</td>
<td>-3.08</td>
<td>6380 ± 40</td>
<td>4763–4508</td>
<td></td>
</tr>
<tr>
<td>Daun 10</td>
<td>25°00’13”N–66°42’45”E Terebralia p.</td>
<td>GrN–31489</td>
<td>-3.97</td>
<td>6305 ± 45</td>
<td>4691–4428</td>
<td></td>
</tr>
<tr>
<td>Daun 6</td>
<td>24°59’20”N–66°42’31”E Terebralia p.</td>
<td>GrN–28802</td>
<td>1.27</td>
<td>5370 ± 35</td>
<td>3649–3411</td>
<td></td>
</tr>
<tr>
<td>Daun 5</td>
<td>24°59’18”N–66°42’29”E Terebralia p.</td>
<td>GrN–28801</td>
<td>-5.44</td>
<td>4900 ± 35</td>
<td>3072–2861</td>
<td></td>
</tr>
<tr>
<td>Daun 4</td>
<td>24°59’18”N–66°42’29”E Ostreidae</td>
<td>GrN–28800</td>
<td>-5.3</td>
<td>4800 ± 35</td>
<td>2933–2671</td>
<td></td>
</tr>
<tr>
<td>Daun 112</td>
<td>25°00’01”N–66°42’28”E Terebralia p.</td>
<td>GrN–32462</td>
<td>-4.95</td>
<td>4625 ± 30</td>
<td>2749–2464</td>
<td></td>
</tr>
<tr>
<td>Daun 8</td>
<td>24°59’26”N–66°42’31”E Mactridae</td>
<td>GrN–28803</td>
<td>-5.16</td>
<td>4540 ± 35</td>
<td>2616–2345</td>
<td></td>
</tr>
<tr>
<td>Daun 105</td>
<td>24°59’35”N–66°42’22”E Telescopium t.</td>
<td>GrN–31643</td>
<td>-5.09</td>
<td>4470 ± 40</td>
<td>2547–2251</td>
<td></td>
</tr>
<tr>
<td>Daun 101</td>
<td>24°59’37”N–66°42’20”E Terebralia p.</td>
<td>GrN–31490</td>
<td>-5.49</td>
<td>4470 ± 30</td>
<td>2529–2267</td>
<td></td>
</tr>
<tr>
<td>Daun 113</td>
<td>25°00’03”N–66°42’23”E Terebralia p.</td>
<td>GrN–32463</td>
<td>-5.44</td>
<td>4455 ± 30</td>
<td>2486–2230</td>
<td></td>
</tr>
<tr>
<td>Daun 103</td>
<td>24°59’35”N–60°42’22”E Terebralia p.</td>
<td>GrN–31491</td>
<td>-5.37</td>
<td>4435 ± 40</td>
<td>2476–2192</td>
<td></td>
</tr>
<tr>
<td>Daun 119</td>
<td>25°00’25”N–64°43’07”E Terebralia p.</td>
<td>GrN–31644</td>
<td>-4.05</td>
<td>4165 ± 25</td>
<td>2106–1871</td>
<td></td>
</tr>
<tr>
<td>Daun 3</td>
<td>25°00’27”N–66°43’05”E Terebralia p.</td>
<td>GrN–27945</td>
<td>-4.49</td>
<td>4100 ± 30</td>
<td>2010–1752</td>
<td></td>
</tr>
<tr>
<td>MH 18</td>
<td>24°54’45”N–67°06’30”E Terebralia p.</td>
<td>GrA–23639</td>
<td>-6.6</td>
<td>5790 ± 70</td>
<td>4212–3817</td>
<td></td>
</tr>
<tr>
<td>PSJ</td>
<td>Unknown</td>
<td>Terebralia p.</td>
<td>GrN–26370</td>
<td>-4.38</td>
<td>4130 ± 20</td>
<td>2036–1805</td>
</tr>
<tr>
<td>Sonari</td>
<td>24°52’28”N–66°41’54”E Terebralia p.</td>
<td>GrN–27054</td>
<td>-4.43</td>
<td>4080 ± 30</td>
<td>1982–1731</td>
<td></td>
</tr>
<tr>
<td>THR 2</td>
<td>24°43’27”N–67°44’44”E Ostreidae</td>
<td>GrN–32119</td>
<td>-0.11</td>
<td>6910 ± 60</td>
<td>5417–5092</td>
<td></td>
</tr>
<tr>
<td>KKT 2</td>
<td>24°42’17”N–67°52’23”E Terebralia p.</td>
<td>GrN–32464</td>
<td>-5.5</td>
<td>6320 ± 45</td>
<td>4701–4442</td>
<td></td>
</tr>
<tr>
<td>Beri</td>
<td>24°43’00”N–67°45’09”E Terebralia p.</td>
<td>GrN–32116</td>
<td>-6.9</td>
<td>5960 ± 50</td>
<td>4320–4041</td>
<td></td>
</tr>
<tr>
<td>THR 3</td>
<td>24°43’46”N–67°45’07”E Terebralia p.</td>
<td>GrA–47084</td>
<td>-5.15</td>
<td>5555 ± 35</td>
<td>3880–3635</td>
<td></td>
</tr>
<tr>
<td>JSH 1</td>
<td>24°42’26”N–67°48’38”E Ostreidae</td>
<td>GrA–45180</td>
<td>-2.34</td>
<td>5325 ± 40</td>
<td>3618–3372</td>
<td></td>
</tr>
<tr>
<td>THR 1</td>
<td>24°43’46”N–67°45’07”E Ostreidae</td>
<td>GrN–27053</td>
<td>-0.64</td>
<td>5240 ± 40</td>
<td>3534–3307</td>
<td></td>
</tr>
</tbody>
</table>

At the time of Alexander’s invasion (327 BC) ‘the sea extended up to Gujo area’ (Panhwar 1964: 100), a boundary generally accepted by both geologists (Bender 1995: fig. 10.18) and historians (Eggermont 1975: map 2). The Indus coastal landscape of the first century AD is accurately described in The Periplus of the Erythraean Sea: ‘the river has seven mouths, very shallow and marshy, so that they are not navigable, except the one in the middle; at which by the shore, is the market town, Barbaricum. Before it lies a small island, and inland behind it is the metropolis of Scythia, Minnagar.’ (Schoff 1974: 37).

This problem has been reconsidered by Flam (1984, 1987), while Blandford, in his geological study of Thatta district, reports:

to the west of Makli Hill there are several small scattered rises in the alluvium; all, except one, which is Khirtar, composed of Nari beds. Farther west, and again to the
south-west, there are some detached rocky rises of peculiar formation, ascribed to the Gáj group.

(Blandford 1880: 154)

A third range of high ground occurs close to Tatta, and is 18 miles long from north to south and 4 from east to west. In all these cases portions are detached and separated by alluvium from the main range, and there are some other small and unimportant patches, none of which are of any size, near the edge of the alluvial area.

(Blandford 1880: 24)

Most authors believe that the above ‘rocky rises’ were islands in Hellenistic times. For instance, according to Piggott (1950: 77) and Khan (1979a: 5), the Tharro Hills were an island close to the northern coastline in Chalcolithic times. This opinion is supported by two radiocarbon dates from marine and mangrove shells (GrN-27053, 5240 ± 40 BP, for THR1; GrA-47084, 5555 ± 35 BP, for THR3). Another date (GrN-32119, 6910 ± 60 BP, for THR2), from a small scatter of Ostreidae, shows that the hills were first settled during the Neolithic (Plate 6).

The 2009–10 surveys led to the discovery of archaeological finds from most of the above rocky outcrops, a few of which were radiocarbon dated (Biagi 2010). They are:

1. Beri: a boat-shaped limestone terrace, some 1.6 km south-east of the Tharro Hills (Lambrick 1942: 110; Romm 2010: 255). Its surface is covered with

Plate 6 Tharro Hills and Beri: distribution map of the radiocarbon-dated sites. The Amri culture settlement is marked by the white square (map by C. Franco and P. Biagi).
mangrove and marine shells, flint artefacts and potsherds. One specimen of
Terebralia palustris mangrove gastropods has been radiocarbon-dated to
5960 ± 50 BP (GrN-32116).

2. Jabal Shah Husein: a hillock some 850m long and 350m wide, c. 12km south of the
Tharro Hills and 1km west of the Makli Hills. Mangrove and marine shells, mainly
Ostreidae, were recovered from seven spots, two of which were radiocarbon-dated
to 5325 ± 40 BP (GrA-45180: JSH1) and 4245 ± 40 BP (GrA-45181: JSH2).

3. Makli Hills: three scatters of *Terebralia palustris* shells and very few flint artefacts
were found close to the sixteenth-century AD fortress of Kalan Kot (Cousens 1998:
98). One yielded the radiocarbon result of 6320 ± 45 BP (GrN-32464: KKT2).

4. Oban Shah: these rocky outcrops were called ‘the island in the sea’ by Arrian
(Robson 1967). A very few mangrove and marine shells come from two different
spots, one of which was dated to 3790 ± 35 BP (GrA-47082: OBS1).

One more *Terebralia palustris* fragment from Kot Raja Manjera (Biagi 2010; Khan 1979a:
6) was radiocarbon-dated to 4635 ± 35 BP (GrA-47083: KRM13).

The new radiocarbon results can help define 1) the seafaring activities of the earliest
inhabitants of this part of the northern coast of the Arabian Sea, 2) the development of the
Indus plain, 3) the variation of the ancient coastline and 4) the distribution of the ancient
mangroves and their exploitation by prehistoric communities.

Discussion

The main achievement of the archaeological research in Sindh during the British period
was the discovery of new Copper and Bronze Age sites. Extensive excavations were carried
out at some of the most impressive sites, thanks to which it was also possible to suggest
relationships with other neighbouring aspects of the third millennium cal. BC. The Amri,
Nal, Kot Diji and Kulli cultures were also defined in this period (Wheeler 1950).

The main changes that occurred after partition, and especially after the 1970s, regard:

1. **Some aspects of the Indus economic system** The Italian contribution was centred on
the study of the craftsmen quarters and the HR area of Mohenjo-daro (Leonardi
1988; Tosi et al. 1984) and the flint mines of the Rohri Hills (Biagi and Cremaschi
1991). One of the peculiarities of the Indus civilization consists in the everyday use of
flint tools instead of metal implements, just the opposite of what one would expect
from a Bronze Age civilization. The study of the bead-making and ceramic
workshops of Mohenjo-daro (Halim and Vidale 1984; Pracchia et al. 1985) pointed
out the importance of flint, its procurement from the Rohri Hills sources, its
technology and the way it was utilized by the city craftsmen.

The Rohri Hills revealed the complexity of the Indus mining centres, for example
those of the Shadee Shaheed Hills (Plate 1), which yielded more than 2,000 flint
mines and workshops (Maifreni 1995). Thanks to their study it was possible to
interpret the way they had been excavated, the varieties of flint available from
different regions of the hills in different Bronze Age periods, and to point out the
importance of the lithic resources for the Indus people, which contrasted with the very limited data available before the 1980s.

2. **The Palaeolithic and Mesolithic** The study of the lithic assemblages collected by Khan in the 1970s, the excavation of Palaeolithic workshops at Ziarat Pir Shaban in the Rohri Hills (Biagi et al. 1996; 1998–2000), the discovery of typical Levalloisian assemblages at Ongar (Biagi 2007b; Biagi and Starnini 2011) and of Mesolithic sites in the Thar Desert (Biagi 2003–4; 2008b) drastically changed our view of the earliest periods of the prehistory of Sindh. Until 2000 nothing was known of the Mesolithic of the study region, the landscapes settled by the last hunter-gatherers of the early Holocene and the characteristics of their chipped-stone assemblages. This was due to the absence of any professional, systematic survey in most of Sindh. In contrast, at present it is clear that the Early, Middle and Late (Upper) Palaeolithic periods are represented by characteristic assemblages with well-defined lithic types (Biagi 2008c), and that Mesolithic bands settled close to freshwater springs and chippable raw material sources, inhabiting coastal zones, river banks and desert sand dunes close to lake shores. At present, dozens of sites of this period are known, which makes the Mesolithic prehistory of Sindh one of the richest of the Indian subcontinent.

3. **The prehistoric settlement of the northern Arabian Sea coast and their chronology** The surveys carried out along the coast of Las Bela and the Indus delta revealed the great archaeological potential of both these territories. The radiocarbon dates from Daun shell middens show that, similarly to what was already known from the coasts of the Persian Gulf and the Arabian Peninsula (Biagi 2008a; Cleuziou 2004; Lambeck 1996; Sanlaville and Dalongeville 2005; Stein 1943), the northern coastline of the Arabian Sea also started to be inhabited around the beginning of the seventh millennium BP, and some kind of seafaring activity led to the earliest settling of the islets at present surrounded by Indus delta alluvium (Biagi 2010) (Plate 7).

![Plate 7](image_url)

Plate 7 Lower Sindh: distribution map of the sites mentioned in the text: 1) Daun, 2) Gadani, 3) Sonari and Pir Shah Jurio (PSJ), 4) Mulri Hills 18 (MH18), 5) Tharro Hills and Beri, 6) Jamal Shah Husein (JSH), 7) Kalan Kot (KKT), 8) Oban Shah (OBS), 9) Kot Raja Manjera (KRM13), 10) Rehri, 11) Jhimpir, 12) Ongar, Daphro and Bekhain. The radiocarbon-dated sites are marked by a white circle (map by P. Biagi).
The radiocarbon results, mainly from specimens of *Terebralia palustris* mangrove gastropods (Table 1), show that the coastline was farther north, up to Kot Raja Manjera, during the Bronze Age, and that it advanced down to the ‘Island in the Sea’, present-day Oban Shah (Eggermont 1975: 30), some one millennium later. Although research in the Indus delta is still under way and the available radiocarbon dates are few, they show that people moved across this part of the Indian Ocean in different periods of prehistory, at least since the beginning of the Neolithic, and exploited both marine and mangrove environments. They also tell us that Early Neolithic communities roughly contemporary with those from Mehrgarh (Jarrige 2004) were also active in the region.

To conclude, in light of the new discoveries, the Holocene prehistory of this part of Sindh, of which almost nothing was known until a few years ago (see, for instance, Allchin and Allchin 1982, 1997; Possehl 2002), needs to be urgently and totally revised.

Acknowledgements

The author is very grateful to all the people and institutions that made the research in Sindh possible, mainly Mir Atta Mohammad Talpur, Mir Ghulam Rasool Talpur, Mir Ahmed Farooq Talpur, Mir Abdul Rehman Talpur; the former Vice-chancellor of Sindh University, Professor Mazharul Haq Siddiqui, and the former Director of the Institute of Sindhology, Mr Shoukat Shoro; all the members of the Joint Rohri Hills Project; Dr M. Spataro (British Museum, London), Professors F. Pontani and R. Nisbet, Dr C. Franco and Mr T. Fantuzzi (Ca’ Foscari University, Venice); and Professors A. R. Khan and B. Talat (Department of Geography, Karachi University). Special thanks are due to Drs A. and S. Gnuttì of Gnutti EURAL (Rovato, Brescia), the Italian Ministry of Foreign Affairs (MAE), the National Geographic Society (Washington), the Prehistoric Society (London), Professor G. Traversari and the CeVeSCO (Ca’ Foscari University, Venice) and the Ligabue Foundation (Venice) that sponsored and financed the archaeological research in Sindh.

*Ca’ Foscari University, Venice, Italy
pavelius@unive.it*

References

Bulletin of the Institute of Sindhology University of Sind, 3(2–3): 11–32.

Biagi, P. 1995. An AMS radiocarbon date from the Harappan quarry-pit 862 in the Rohri Hills (Sindh – Pakistan).

Biagi, P. and Nisbet, R. 2010. The prehistoric flint mines at Jhimpir in Lower Sindh (Pakistan).
Antiquity Project Gallery, 84 (235). Available at: http://antiquity.ac.uk/projgall/nisbet325/

Ancient Sindh, 1: 13–75.

Burnes, A. 1834. Travels into Bokhara Being the Account of a Journey from India to Cabool, Tartary and Persia; also, Narrative of a Voyage on the Indus, from the Sea to Lahore, with Presents from the King of Great Britain: Performed under the Orders of the Supreme Government of India, in the Years 1831, 1832, and 1833. London: John Murray.

Paolo Biagi is Full Professor of Prehistory and Protohistory at Ca’ Foscari University, Venice. He has carried out research and excavations in Northern Italy, Sardinia, Transylvania, Ukraine, Western Macedonia, Oman, Kuwait and Sindh (Pakistan). His main interests concern the prehistory of the Balkan Peninsula, Arabian Sea coasts, Indus Valley and their radiocarbon chronology.